
Transposition, Padding, and Product
Cipher Lab

Overview 1
Part 1: Columnar Transposition 1

Tasks 2
Part 2: Padding for CT 3

Padding Examples 3
Tasks 4
Part 3: Product Ciphers 4
Multi-Round Product Ciphers 5
Product Ciphers: Do Padding Once, and do it First 6
Task 8

Extra Credit 10
Submitting your Extra Credit Project 10

Overview
In this exercise, you and a partner will experiment with a Columnar Transposition Cipher
(CT). This will give you hands-on experience working with transposition ciphers and
coping with aspects of block ciphers, such as padding.

🛑 This is a terrible encryption algorithm! Do not ever use it for anything important!
Like, not ever!

Part 1: Columnar Transposition

A Columnar Transposition (CT) works by using a grid to “shuffle” the letters in a
plaintext. You start by writing symbols into the top-left of a grid of a particular size (which
we call a transposition box), moving to a lower row when an upper row is full. Once the
box itself is full, it is read out in columns top to bottom, left to right (hence the name).



For example, given the input “abcdefghijklmnop” and a 4x4 grid, a CT cipher would
perform the following process:

Input Transformation Box Output

abcdefghijklmnop→

a b c d

e f g h

i j k l

m n o p

→ aeimbfjncgkodhlp

To decrypt, you simply perform the same process again, but this time starting with the
ciphertext and obtaining the plaintext as output.

CT ciphers are distinct from the Caesar and Vigenère ciphers in at least two important
ways. First, CT ciphers perform transposition, unlike Caesar and Vigenère which only
perform substitution. Secondly, Caesar and Vigenere are stream ciphers, encrypting
one symbol at a time, while CT is a block cipher. A block cipher cannot perform
encryption until and unless a certain amount of data (the block size) is available. This
means that CT ciphertext will be written out in discrete blocks. This will require padding
the input so that its size is a multiple of the blocksize, which we’ll discuss in a little bit.

Does the CT use a key? The block size for the CT is the square of its dimension. So, if
the dimension is 4, the block size is 4 * 4 = 16. Most real-world ciphers (e.g., AES) have
a fixed block size – for example, AES always uses 128-bit blocks (16 bytes). However,
CT works with any size dimension the sender and receiver agree upon. In this way, the
“key” for the CT is the dimension of the grid – not a very strong key, since it has to be an
integer, and very large values are not very useful (why)?

Tasks
1. Using a 2x2 grid, encrypt a 16-character message of your choosing. Pass it to your

partner. (You’ll need four blocks.)
2. Decrypt your partner’s encryption and make sure it is correct.
3. Using a 4x4 grid, encrypt a different 16-character message of your choosing. Pass it to

your partner. (You’ll only need one block.)
4. Decrypt your partner’s encryption and make sure it is correct.
5. Using a 1x1 grid, encrypt the message “cafe”. Pass it to your partner. (You’ll need four

blocks.)
6. Decrypt your partner’s encryption and make sure it is correct.
7. Answer the questions on Canvas.



Part 2: Padding for CT
Block ciphers encrypt and decrypt a fixed number of bytes at once, so we can’t run the
algorithm unless there is enough input to fill a whole block. As a result, if the message
ends before the block is full, a block cipher must pad the input before encrypting it.
However, this padding must be done in a way that can be unambiguously removed
upon decryption. In other words, the original length of the plaintext must be able to be
recovered, even if the plaintext looks random or even looks like padding!

Suppose d is your CT grid dimension, so the block size is d2. Such a CT cipher must
have d2 bytes (symbols) before encrypting or decrypting. If there are not d2 bytes of
input available, you should pad the remaining space in the buffer by inserting an 'X' in
the first open spot (serving as a flag) followed by as many 'Y' bytes required to fill the
block being padded. Usually, this means that the padding consists of an ‘X’ and some
number of ‘Y’s. However, if there is only one empty byte in the block, you would pad
with just ‘X’.

It turns out that padding is also used to indicate the end of the plaintext, so, if the
plaintext fills the last block completely, we will create a complete additional “padding
block” consisting of 'X' followed by enough 'Y' bytes to fill the block.

Thus, there are three cases for padding, and once we reach the end of the input, one
case will always apply:

1. There is only space for one symbol. Add an ‘X’.
2. There is space for >1 symbols. Add an ‘X’ in the next spot and fill the remaining

space with ‘Y’s.
3. The plaintext ends exactly at the end of a block. Fill an entire block with padding.

When decrypting, remove the padding and ignore it.

💡 This means that you’ll always have to add padding. Either you’ll add it to the last
block of input, or you’ll add a full padding block after the input ends.

In case you’re interested, this particular “XYYY…” approach to padding was suggested
by Schneier and Ferguson, but there are many block cipher padding schemes.

Padding Examples
In these examples, assume a four-byte (2x2) block.

1. Final block: “00”. Pad the last plaintext block before encryption so that it reads
“00XY”. After decryption, “00XY” will be the last block. Remove any trailing Ys
and the final X so that it again reads: “00”

https://en.wikipedia.org/wiki/Padding_(cryptography)


2. Final block: “X”. Pad the last plaintext block before encryption so that it reads
“XXYY”. After decryption, remove the trailing Ys and the final X so that it reads
“X”. (See how the algorithm keeps the actual X in the message?)

3. Final block: “ABC”. Add an X in the last spot so that it reads “ABCX”. On
decryption, remove any trailing Ys (there are none!) and then remove the final X,
resulting in “ABC”.

4. Final block: “ABCD”. There is no room for padding, so add a full padding block
“XYYY” to the plaintext before encryption. On decryption, the second to the last
block will decrypt “ABCD”. The final block will decrypt “XYYY” and should be
ignored after decryption.

Tasks
1. Using a block size of 4 (e.g., a 2x2 grid), write the message “A” into the grid and pad it

as required. Pass it to your partner.
2. Unpad the message from your partner, ensuring that they padded it correctly.
3. Using a block size of 4 (e.g., a 2x2 grid), write the message “XYY” into the grid and pad

it as required. Pass it to your partner.
4. Unpad the message from your partner, ensuring that they padded it correctly.
5. Using a block size of 4 (e.g., a 2x2 grid), write the message “1234” into the grid and pad

it as required. Pass it to your partner. (Hint: you’ll need two blocks!)
6. Unpad the message from your partner, ensuring that they padded it correctly.
7. Using a block size of 16 (e.g., 4x4 grid), write the message “A” into the grid and pad it as

required. Pass it to your partner.
8. Unpad the message from your partner, ensuring that they padded it correctly.
9. Answer the questions on Canvas.

Part 3: Product Ciphers
A Product Cipher is a cipher that uses multiple transformations in series. For example, a
Vigenère Cipher (VC) and a Columnar Transposition (CT) can be combined as follows:

EColumnar(dim, EVigenere(key, plaintext)) = ciphertext

This example first performs Vigenere substitution using 'key' on 'plaintext' and then
performs a Columnar Transposition with a dim * dim block on the resulting output.
Cryptographers call substitution functions S-boxes and transposition functions P-boxes
(P for permutation). So, this product cipher performs one S-box and one P-box, like so:



Decryption can be performed using the individual decryption algorithms in reverse. Note
that you must do the inside operations first. So, first reverse the CT, and then undo the
VC:

DVigenere(key, Dcolumnar(dim, ciphertext)) = plaintext

Multi-Round Product Ciphers
Product Ciphers often make use of multiple rounds where the same steps are
performed some number of times. For example, if we collapse the previous encryption
functions together as follows:

EColumnar(dim, EVigenere(key, plaintext)) → Eproduct(dim, key, plaintext)

we can express two rounds as:

Eproduct(dim, key, Eproduct(dim, key, plaintext)) = ciphertext

we could further “collapse” this function like so:

Eproduct(dim, key, num_rounds, plaintext) = ciphertext

Decryption would use the appropriate functions in reverse. Collapsing the decryption
functions:

DVigenere(dim, DColumnar(key, ciphertext)) → Dproduct(dim, key, ciphertext)

we can express two rounds as:

Dproduct(dim, key, Dproduct(dim, key, ciphertext)) = plaintext

… and we can further collapse this function too:

Dproduct(dim, key, num_rounds, ciphertext) = plaintext



For this part of the lab, you will implement the simple Product Cipher just described. In
other words, you will first perform VC with the given key and then perform CT using the
dimension 4 (a block of 16 bytes) for a given number of rounds. You will implement both
encoding and decoding mechanisms.

Product Ciphers: Do Padding Once, and do it First
Padding is still required for this cipher, since the product cipher is a block cipher.

However, it is not obvious how to combine the stream cipher of Vigenère with the block
cipher of the Columnar Transposition. One approach might be to think of “one round” of
our Product Cipher as:

1. Vignère be performed on the whole file
2. Columnar on the file (block by block), padding the last block

There's a problem with this approach. When round two occurs, Columnar will again add
padding (since CT always adds padding to the end of the input). Each of n rounds will
add more padding to the end of the file, but the padding blocks will not all have the
same number of rounds (the last block of padding will not have gone through Vigenère
substitution, for example).

To illustrate why this is not a good approach, suppose we are using a two round cipher
as described. We have the input “ABCDE”, we are using a dimension of 2 (block size of
4), and our Vigenère key is “1111” (we are going to simply shift each letter by 1 position
in our heads). If we do VC on the whole input first, we get:

Round 1

VC(11111, ABCDE) → BCDEF

Then we would do a CT:

BC
DE → BDCE

FX
YY → FYXY

… giving us a Round 1 output of:

BDCEFYXY

Round 2

Picking up with our Round 1 output:

VC(11111111, BDCEFYXY) →
CEDFGZYZ

Then, another CT:

CE
DF → CDEF

GZ
YZ → GYZZ

And more padding (since we ended on a
block division!)

XY



YY → XYYY

… giving us a final output of: CDEFGYZZXYYY, which is much larger than our input and,
as promised, the last padding block is unciphered. Boo.

Instead, the entire cipher should function as a block cipher, encrypting each block of
input, first using Vigenère and then using Columnar. Each set of n rounds is performed
on a single block before moving to the next block, enabling you to reuse the same
structures. When the very last block of the input is reached, that plaintext block is
padded to the block size before Vigenère and Columnar are applied in the first round.
Then in the second (and future) rounds, the block is already full and should not be
padded again. On decryption, the transformation rounds are applied, and, if it is the last
block in the file, the padding is removed before the plaintext is written out.

Using the same example conditions as above:

Block 1, Round 1

VC(1111, ABCD) → BCDE

Then we would do a CT:

BC
DE → BDCE

Block 1, Round 2

VC(1111, BDCE) → CEDF

Then we would do a CT:

CE
DF → CDEF

Then, we would move on to our next block...

Block 2, Round 1

We only have 'E' as our input, so we need to pad the block. Thus, 'E' becomes:

EXYY



Now we can do our rounds:

VC(1111, EXYY) → FYZZ

Then we would do a CT:

FY
ZZ → FZYZ

Block 1, Round 2

Now on to round two. Our block is already full (since we padded it) so we don't need to
do any more padding.

VC(1111, FZYZ) → GAZA

Then we would do a CT:

GA
ZA → GZAA

… giving us a final output of: CEDFGZAA. This output is much shorter and leaks much
less information.

💡
To summarize: Read in blocksize bytes of input. If you have a full block,
perform Vigenère and Columnar in sequence for n rounds and write it to disk.
Then, read in the next blocksize bytes and repeat the process until you run out
of input. Pad only the last block, and pad it before doing any encryption.

To decrypt, reverse the process. Note however that to remove the padding from the last
block, you’ll need to do Vigenère and Columnar for n rounds first. You’ll remove the
padding as the last step before writing the output.

Task
1. Using the product cipher described here, encrypt the message “A” using the padding

scheme described above, the Vigenere key “ABCD” (shift values 0, 1, 2, 3), and a 2x2
CT grid. You should get the ciphertext “AAYB”.

2. Decrypt the message “AAYB” using the product cipher decryption described above.
3. Multi-round product cipher. Use the product cipher described here, except this time go

through the Vigenere and Columnar steps twice. Encrypt the message “ABCD” using the
padding scheme described above, the Vigenere key “ABCD” (shift values 0, 1, 2, 3), and
a 2x2 CT grid. Since the input ends on a block boundary, the steps will be as follows:



a. First block:
i. Encrypt the first block (“ABCD”) using Vigenere – the block is full so it

doesn’t need padding.
ii. Encrypt the previous result using CT and a 2x2 grid.
iii. Encrypt the previous result using Vigenere and the key.
iv. Encrypt the previous result using CT and a 2x2 grid.

b. Second block:
i. The block is empty, so pad the full block.
ii. Go through steps i-iv with the padding block as for the first block.

c. Compare your result with your partner. You should have two blocks:
“AEFJ XBBE”

4. Decrypt the previous result and ensure you get “ABCD” as the plaintext.
5. Answer the questions on Canvas.



Extra Credit
There are two extra credit opportunities for this assignment.

EASY: For 1% on top of your earned points, implement a product cipher in your favorite
language. It must be your own work and should not contain any pieces of code from online
sources, or be AI-generated. For more details of the extra credit option, please contact TA /
instructor.

HARD: For 5% extra credit, implement a multi-round product cipher for encryption and
decryption. Use the encryption and padding scheme described in the lab manual.

For full credit, your implementation must meet the following requirements:
1. The code should read the Vigenere key and input text from a file and write the output

into another file.
2. Input and key should not be limited to alphanumeric only. In other words, your code

should work with any binary input as plaintext or key.
3. Mode (encode/decode), vigenere key path file, input path file, output path file, columnar

dimension, and round number should be read as command line parameters. For
example:

product.py encode /users/home/key.txt /home/input.txt /home/encode.txt 4 2

…should encrypt the input.txt file with key.txt, and a columnar matrix of 4X4, and it will
run for two rounds.

4. If you use any other language than C, C++, Java or Python, please write thorough
documentation so that someone who does not know the language can have a basic
understanding of your code.

If your code meets all the requirements, you’ll get full extra credit which will be added to your
grade at the end of the semester. If not all requirements are followed, you might not get all 5%.

Submitting your Extra Credit Project

Push your code into https://github.umn.edu/ and add TA and instructor as a collaborator. If you
don’t know how to use git, please follow the instructions in this document:
When you push your code and it is ready to be graded, please email your TA.


